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Abstract

This study presents a continuation method to calculate flow bifurcation with/without heat transfer in a two-sided lid-driven cavity
with an aspect ratio of 1.96. The top and bottom lids of the cavity move in opposite directions and are allowed to be of different tem-
peratures, thereby establishing a temperature gradient in the cavity flow and generating thermal transport. A comprehensive bifurcation
diagram of the cavity flow is derived via the continuation method and linear stability analysis is used to identify the nature of the various
flow solutions. For the isothermal flow case, the Reynolds number is used as the continuation parameter and three symmetric flows and
two asymmetric flows are identified. For the non-isothermal flow case, the Grashof number is used as a continuation parameter. The flow
evolution is studied for different temperature gradients, and bifurcation diagrams are constructed as a function of the continuation
parameter. A thumb-shaped boundary line is established which identifies a restricted region defined in terms of the Grashof and Rey-
nolds numbers within which a stable flow state exists.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Flow in an enclosure driven by moving boundaries is a
fundamental problem in fluid mechanics. This type of flow
can be found in certain engineering applications within
coating and drying technologies, or in academic research,
where it may be used as a benchmark problem for testing
various numerical methods and hydrodynamic stability
problems. A classic example is the case where a flow is
induced by the tangential movement of either one or both
facing cavity boundaries (i.e. one-sided lid-driven cavity
flow or two-sided lid-driven cavity flow, respectively).
One-sided lid-driven flow in a square cavity was studied
extensively in the literature. For example, the work by
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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Pan and Acrivos [1], Prasad and Koseff [2], Ahlman et al.
[3] and Croce et al. [4].

The one-sided lid-driven cavity flow problem was
extended to the case of two-sided lid-driven cavity flow by
Kuhlmann et al. [5,6]. These studies performed experimen-
tal and theoretical investigations into the two- and three-
dimensional flows which are induced when the two facing
sides of the cavity move with constant velocities in opposite
directions to each other. Their results indicated that the
existence of non-unique two-dimensional steady flows
depends upon the cavity aspect ratio and upon the Rey-
nolds number, which is determined by the wall velocities.
At a low Reynolds number, the flow consists of separate
co-rotating vortices adjacent to each of the moving walls.
As the wall velocities increase, a jump transition occurs
and the two vortices partially merge to generate a flow pat-
tern which resembles cat’s eyes. At high Reynolds numbers,
the cat’s eye flow becomes unstable and transforms into a
steady three-dimensional cellular flow. Albensoeder et al.
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Fig. 1. The geometric model and boundary conditions of the cavity.
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[7] performed a numerical investigation of two-sided, lid-
driven cavity flows and identified a large number of non-
unique steady flow types. Alleborn et al. [8] investigated
numerically two-dimensional flow accompanied by heat
and mass transport in a two-sided lid-driven cavity con-
taining a temperature gradient. Albensoeder et al. [9] pro-
vided accurate linear-stability boundaries, i.e. critical
Reynolds number, for a wide range of aspect ratios and
showed four different instabilities may occur which are all
due to centrifugal effects. Albensoeder and Kuhlmann
[10] investigated the linear stability of the cavity flow driven
by two parallel moving walls with the same speed, and
inquired about the type of instability and the dependence
of the critical Reynolds and wave number on the aspect
ratio. Albensoeder and Kuhlmann [11] investigated the
flow driven by anti-parallel motion of two facing walls
numerically, and showed the two-dimensional flow
becomes unstable to different modes, depending on the
cross-sectional aspect ratio. Blohm and Kuhlmann [12]
measured the steady and time-dependent bifurcations
which occur at higher Reynolds number. A review of the
available literature shows that the flow transitions between
multiple stable solutions in two-sided lid-driven cavity flow
and the heat transfer in a cavity with a temperature gradi-
ent have not been discussed by previous researchers. For a
systematic study of the respective instabilities and the non-
linear pattern formation, the basic two-dimensional flow
solutions must be known. Therefore, it is the purpose of
this present study to investigate the stability of the two-
dimensional solution manifold of such flows and to con-
struct a complete chart of the heat transfer efficiency.

The governing equations for the resulting two-dimen-
sional cavity flow are of a non-linear nature, and therefore,
multiple solutions are possible. Previous numerical studies
addressing the prediction of multiple stable solutions can
be classified as belonging to one of two different
approaches. The first approach treats the problem as an
initial value problem and marches in time to attain a
steady-state solution. The second approach solves the
steady Navier–Stokes equations by means of a path follow-
ing method or the so-called continuation method [13,14]. A
disadvantage of the former approach is that it is generally
unable to identify ‘‘steady-state unstable solutions” since
the time-dependent Navier–Stokes equations will give a
stable steady-state solution if its solution exists. Therefore
it is difficult to justify genetic bifurcation patterns if
using the time-marching method. However, the second
approach is successful in determining both stable and
unstable steady-state solutions [14,15]. Accordingly, it is
this approach which the current study adopts to obtain a
solution manifold and to construct bifurcation diagrams.
A two-dimensional linear stability analysis is performed
to determine whether or not each computed solution is sta-
ble. Once the solution manifold has been determined, a
time-dependent formulation is developed in order to inves-
tigate the permissible flow transitions within the solution
manifold.
The current study is summarized as follows: two-dimen-
sional flow in a two-sided lid-driven cavity containing a
temperature gradient is investigated numerically. The two
lids are maintained at different temperatures and are
moved tangentially in opposite directions to each other.
The flow structures are highly dependent upon the aspect
ratio of the cavity, which in the present study is 1.96, and
upon the velocities of the two lids. By adopting the Rey-
nolds number and the Grashof number as continuation
parameters, flow transitions can be identified and bifurca-
tion diagrams constructed as functions of the Reynolds
number or of the Grashof number. The bifurcation dia-
grams illustrate the existent regions of various flow modes.
Section 2 of this paper presents the governing equations for
the two-sided lid-driven cavity flow with a temperature gra-
dient and introduces the numerical method which will be
adopted for its solution. Meanwhile, Section 3 presents
the computed results and provides a detailed discussion.
The final section of this paper presents some brief con-
clusions.

2. Governing equations and numerical method

2.1. Governing equations

Fig. 1 presents the case of an incompressible Newtonian
fluid within a cavity whose height and width are given by
H and L, respectively. In the present study, the aspect ratio
of the cavity is defined as H/L = 1.96. The cooled upper
wall is maintained at a constant temperature of Tc and
moves at a velocity of Ub. Meanwhile, the constant tem-
perature and velocity of the heated lower wall are given
by – Ub and Th, respectively. The upper and lower walls
move tangentially in opposite directions to each other.
The stationary vertical walls are considered to be solid
and adiabatic.
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The non-dimensional governing equations in the Carte-
sian coordinate system for the stream function (w), vortic-
ity function (B) and thermal transport, respectively, can be
written as
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where T is the temperature of the fluid, Re = UbL/m,
Gr = gbTH3(Th � Tc)/m

2, Pr = m/a, m is the kinematic vis-
cosity of the fluid, g denotes the gravitational acceleration,
bT is the coefficient of thermal expansion and a is the ther-
mal diffusivity. Note that for the isothermal flow case, the
Gr = 0 and hence the momentum equation is decoupled
from the energy equation.

The boundary conditions of the cavity flow may be
expressed as follows:

(a) On the top wall (y = 1.96):
w ¼ 0;
ow
oy
¼ 1;

ow
ox
¼ 0;

o2w
oy2
¼ �1; T ¼ 0:
(b) On the bottom wall (y = 0):
w ¼ 0;
ow
oy
¼ �1;

ow
ox
¼ 0;

o2w
oy2
¼ �1; T ¼ 1:
(c) On the left-side wall (x = 0):
w ¼ 0;
ow
oy
¼ 0;

ow
ox
¼ 0;

o
2w

ox2
¼ �1;

oT
ox
¼ 0:
(d) On the right-side wall (x = 1):
w ¼ 0;
ow
oy
¼ 0;

ow
ox
¼ 0;

o2w
ox2
¼ �1;

oT
ox
¼ 0:
To establish the steady solution manifold of the cavity
flow, it is first necessary to drop the oB/ot and oT/ot terms
from Eqs. (2) and (3).

The kinetic energy of the two-dimensional cavity flow is
given by

Ke ¼

R R
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dxdyR R
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:

Owing to heat transfer feedback in the system, the local
heat transfer coefficient, h, is expressed by the Nusselt num-
ber, which is defined below together with the average value
of Nu:

NuðxÞ ¼ hH
k
¼ �oT

oy
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0

NuðxÞdx:
2.2. Numerical method

The governing equations presented above are discretized
by central differences of a second order in a regular grid
system to form a system of non-linear algebraic equations,
i.e.

GðX ; kÞ ¼ 0; ð4Þ
where X is the solution vector and k is the continuation
parameter, i.e. the Reynolds or Grashof number.

This gives an iterative sequence, [X(t)(k)], which is
expressed as

X ð0ÞðkÞ � initial estimate; ð5aÞ
GX ðX ðtÞ; kÞ½X ðtþ1Þ � X ðtÞ� ¼ �GðX ðtÞ; kÞ;

t ¼ 0; 1; 2; . . .
ð5bÞ

where GX is the Jacobian matrix of Eq. (4).
A suitable method of obtaining good initial estimates is

to use a Taylor expansion of the solution with respect to
changes in parameter k, i.e.

X ðkþ dkÞ ¼ X ðkÞ þ dkX kðkÞ: ð6aÞ
The solution vector, Xk, is derived from Eq. (4) and satisfies
the following:

GX ðX ; kÞX k ¼ �GkðX ; kÞ: ð6bÞ
The iterative method described in Eqs. (5) and (6) is

known as the Euler–Newton continuation. This method
is extremely effective and usually converges quadratically.
However, the method fails at points where the Jacobian
matrix GX(X,k) = 0 is singular. The Keller’s continuation
method [13] is introduced to overcome this difficulty, i.e.

NðX ðs; kðsÞÞÞ � h _X ðs0Þ � ½X ðsÞ � X ðs0Þ�i þ _kðs0Þ½kðsÞ � kðs0Þ�
� ðs� s0Þ ¼ 0; ð7Þ

where [X(s0,k(s0))] is a previously computed solution for k
and s = s0. _X ¼ dX=ds and _k ¼ dk=ds denote the compo-
nents of a tangent vector to the solution path [X(s),k(s)].

A new system of equations can then be written as

GðX ; kÞ ¼ 0;

NðX ; k; sÞ ¼ 0:

�

The Jacobian matrix of this new system is given by

oðG;NÞ
oðX ; kÞ ¼

Gx Gk

Nx N k

� �
: ð8Þ

As well as the Keller’s continuation method, it should be
noted that with the Euler–Newton continuation in param-
eter s rather than in k, it is also possible to follow the solu-
tion around singular points.

2.3. Linear stability analysis method

A linear stability analysis is performed in order to inves-
tigate the stability of the various flow states obtained by the
continuation method described above. The basic state X0
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identified by Newton’s method during continuation is per-
turbed by small, time-dependent quantities, i.e.

X ¼ X 0 þ eect; ð9Þ

where e is a small disturbance vector.
For transient solutions, a set of time-dependent equa-

tions can be derived and expressed as

MðX Þ dX
dt
¼ GðX ; kÞ; ð10Þ

where M(X) is the mass matrix. This matrix is singular be-
cause some equations, e.g. the equation for stream func-
tion, do not possess an explicit time-dependent term.

Substituting Eq. (9) into Eq. (10), after collecting the lin-
ear terms of e, gives the generalized algebraic eigenvalue
problem, i.e.

cMðX 0Þe ¼ eJ ðX 0Þe: ð11Þ

where the matrix eJ represents the Jacobian matrix of
G(X,k) evaluated for the basic state solution.

The stability characteristics of the basic state, X0, is
determined by the sign of the eigenvalue c. The basic solu-
tion is infinitesimally stable if Re{c} < 0 holds for all eigen-
values c, i.e. if all perturbations in Eq. (9) decay with time.
However, if at least one eigenvalue exists for which
Re{c} > 0, the corresponding eigenmode will grow as
t ?1 and the basic solution is unstable. However,
because M is singular, some eigenvalues are infinite and
do not contribute towards linear instability. When calculat-
ing the leading eigenvalues, it is necessary to remove these
infinite eigenvalues. An effective algorithm for doing so is a
shift-and-inverse Arnoldi operation [16].

The generalized eigenvalue problem given in Eq. (11)
can be transformed into a standard eigenvalue problem
as follows:

ðeJ � bMÞ�1Me ¼ ĉe; ĉ ¼ 1

c� b
; ð12Þ
where b is a complex shift parameter such that
ðeJ � bMÞ�1M is not singular.

This standard problem is then solved by a restarted, iter-
ative Arnoldi method, which is essentially a sophisticated
extension of the power iteration method and which allows
a number of eigenvalues ĉ of largest magnitude to be calcu-
lated. ARPACK [16,17]. an Arnoldi-method based pack-
age, is then used to calculate the leading eigenvalues and
corresponding eigenvectors.

The identification of flow transitions between various
flow modes is implemented by backwards-Euler time step-
ping. The governing equations are discretized according to
the following scheme:

GðX ; tÞ ¼ 0: ð13Þ
This gives a sequence of iteration [X(t)(t)] which is defined
by

X ð0Þð0Þ � initial state; ð14aÞ
GX ðX ðtÞ; tÞ½X ðmþ1Þðt þ DtÞ � X ðtÞðt þ DtÞ� ¼ �GðX ðtÞ; tÞ;

where t ¼ 0; 1; 2; . . . ð14bÞ

In Eq. (14b), GX is the Jacobian matrix of Eq. (13).
An effective method to obtain good initial estimates for

this calculation is to employ a Taylor expansion of the
solution with respect to changes in the parameter Dt, i.e.

X ð0Þðt þ dðDtÞÞ ¼ X ðtÞ þ dðDtÞX tðtÞ: ð15Þ

Eq. (13) is used to obtain Xt, and it satisfies:

GX ðX ; tÞX t ¼ �GtðX ; tÞ: ð16Þ

The method described in Eqs. (14)–(16) is known as the
backwards-Euler time stepping. Since the second order
accuracy in time is employed, it is necessary to provide
two initial solutions at the beginning of the time marching
calculation. One of these solutions can be obtained from
the initial stable state, while the other is obtained by using
the same numerical method with a first order finite differ-
ence in time. Before the iteration algorithm is executed in
order to obtain the convergence solution of the next time
level, a predictor step is applied which yields close estimates
to the convergence solution. Hence, the calculation algo-
rithm is extremely effective and usually the method has
quadratic convergence in numerics.

3. Results and discussion

3.1. Isothermal flow case using Re as the continuation

parameter

A two-dimensional steady incompressible isothermal
flow (Gr = 0) in a rectangular cavity with an aspect ratio
of 1.96 is calculated. The 2-D basic flow is computed using
a second-order finite difference method with grid stretching
towards all boundaries. In comparison to the results com-
puted by doubled resolution on 181 � 281 grid points, grid
independent solutions are practically obtained by 91 � 141
non-equal space grid points. The 91 � 141 grid points are
employed for all calculations. The flow is driven by the
upper and lower cavity walls, which move with equal veloc-
ities in opposite directions. The Reynolds number of the
flow is proportional to the wall velocities. The continuation
method is used to predict the two-vortex flow and the cat’s
eye flow, which occur at Re = 200 and Re = 240, respec-
tively. Fig. 2 compares the present theoretical results for
the horizontal velocity component distributions of the
flows along the plane which intersects the middle of the
upper and lower walls with experimental results by Kuhl-
mann et al. [5]. It is clear that there is good agreement
between the two sets of results. Fig. 3a plots the value of
the stream function at the cavity center as a function of
the Reynolds number. It is noted that the continuation
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curve comprises six individual segments. Along segment I,
the flow remains stable as the Reynolds number increases
from a low value to a critical value of Re = 429, which is
marked as point A and which represents a saddle-node
bifurcation. Along the continuation path from points A
to B (i.e segment II), the flow becomes unstable until
Re = 236 (point B), at which point a second saddle-node
bifurcation is evident. Along segment III, the flow becomes
stable once again until point P, which occurs at a value of
Re = 1048 and which represents a symmetry-breaking
bifurcation point. After point P, segment III divides into
two separate segments, i.e. segment IV and segment V.
Flows in segment IV inherit the stable flow characteristics
evident in segment III, while the flow in segment V exhibits
an unstable asymmetry state which persists until point C
(Re = 690), at which point a third saddle-node bifurcation
is identified. After point C, the flow in segment VI is more
asymmetrical and exhibits stable characteristics. In previ-
ous studies, Kuhlmann et al. [5,6] identified the two bifur-
cation points noted at points A and B and cited
corresponding Re values of 427 and 234, respectively. It
is noted that the current theoretically predicted values of
429 and 236 are in good agreement with these published
results. The symmetry-breaking bifurcation point (point
P) has not been reported previously, however. The present
theoretical results clearly indicate the existence of multiple
flow solutions in the regions of Re = 236–429, Re = 690–
1048 and Re = 1048–2000.

Fig. 3b plots the value of the two-dimensional cavity
flow kinetic energy, Ke, as a function of the Reynolds num-
ber. Along segment I, the kinetic energy of the flow
increases with rising Reynolds number, which is propor-
tional to the driving momentum of the walls. The flow then
undergoes a saddle-node bifurcation at point A, corre-
sponding to Re = 429. Along segment II of the continua-
tion path (i.e. from points A to B), it is observed that the
kinetic energy of the unstable flow reduces significantly as
Re falls to a value of 236. The reduction of the kinetic
energy means that the cat’s eye flow requires less supplied
energy to sustain itself. Subsequently, the kinetic energy
increases gradually as the Reynolds number rises to a
value of Re = 1048 (i.e. point P), which represents a
symmetry-breaking bifurcation point. At point P, segment
III divides into segments IV and V. The flow along segment
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V undergoes a saddle-node bifurcation at point C. In gen-
eral, the kinetic energy of the flow increases slowly with an
increase of Reynolds number. It should be noted that the
intersection point of the kinetic energy distributions of seg-
ments IV and VI does not represent a bifurcation point.

Fig. 4 depicts the streamline contours of the predicted
flow patterns along the continuation path. The upper cav-
ity wall moves towards the right, while the lower wall
moves in the opposite direction with an equal velocity.
The flow develops from a low Reynolds number along seg-
ment I of the continuation path. Two separate vortices are
apparent adjacent to each of the moving walls and a stag-
nation point appears at the center of the cavity. Both vor-
tices co-rotate in a clockwise direction and their strength
increases as the Reynolds number rises. This flow pattern
is referred to as two-vortex flow by Kuhlmann et al. [5].
Two small recirculations located approximately midway
between the upper and lower walls appear next to the sta-
tionary cavity walls. These two recirculations expand in
size as the Re number increases and result in a ‘‘pinch
effect” of the two co-rotating vortices. At point A, which
corresponds to a value of Re = 429, the two co-rotating
vortices merge slightly. As the Reynolds number decreases
along segment II, the two recirculations become smaller
and finally vanish at point B (Re = 236), where it is noted
that the two co-rotating vortices are partially merged. This
Fig. 4. The flow patterns in each branch: (a) Follow segment I, II and III to th
fork point along segment IV and (c) the development of asymmetric flow patt
flow mode is referred to by Kuhlmann et al. [5] as ‘‘cat’s eye
flow”. Along segment III which originates from point B,
the two co-rotating vortices finally merge to form a single
large recirculation which occupies most of the cavity. As
the Reynolds number increases, two small recirculation
bubbles appear in the top-left and bottom-right corners
of the cavity. As shown in Fig. 4(b), these bubbles gain
in strength along segment IV. Segments V and VI represent
the asymmetric flows which originate from the symmetry-
breaking bifurcation point, P. Along segment V, one of
the small bubbles gains in size and strength and causes
the other bubble to decay. As indicated in Fig. 4(c), only
the small bubble in the top-left corner of the cavity sur-
vives. This phenomenon causes the flow to become asym-
metrical. Along segment VI, the surviving small bubble
expands rapidly and suppresses the major recirculations
in the center of the cavity. Meanwhile, another small recir-
culation appears in the bottom-right cavity corner.

3.2. Flow transition

The bifurcation diagram constructed in Fig. 3 not only
illustrates the restricted ranges of Reynolds number for
which equilibrium flow states exist, but also provides infor-
mation about the permissible flow transitions and the final
flow state. It clearly indicates multiple solutions in the
e pitch-fork point (Re = 1048), (b) symmetric flow patterns after the pitch-
erns after the pitch-fork point along V and VI.
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regions of 236 < Re < 429, 690 < Re < 1048 and Re > 1048,
respectively. A time-stepping numerical method can be
applied to generate the time-dependent transitions among
the stable states. Since the initial-value solver is inherently
unable to converge to unstable solutions, it is only possible
to obtain stable equilibrium at specific Reynolds numbers if
it converges in time. The permitted stable flow states can be
generated by an appropriate control of the upper and lower
cavity wall velocities, i.e. by controlling the Reynolds num-
ber of the flow. This transition process not only provides
information about flow evolution, but also confirms flow
stability. A few examples are listed in the following:
3.2.1. Two-vortex flow to cat’s eye flow transition

The transition from two-vortex flow to cat’s eye flow is
generated by commencing with a stable two-vortex flow
and then suddenly accelerating the two walls to a range
of 429 < Re < 690 such that only the cat’s eye flow remains
stable. Fig. 5 shows a typical example of the flow transi-
tion. It is noted that although stable cat’s eye flow also
exists when Re > 236, the two-vortex flow to cat’s eye flow
transition can only occur in the range of 429 < Re < 690.
When Re > 690, two stable flows (i.e. cat’s eye flow and
strong asymmetric flow) exist. Therefore, suddenly acceler-
ating the speed to this range cannot guarantee a transition
to cat’s eye flow, i.e. the terminal state may either be a cat’s
eye flow or a strong asymmetric flow.
3.2.2. Cat’s eye flow to two-vortex flow transition

The cat’s eye flow to two-vortex flow transition is gener-
ated by commencing with a stable cat’s eye flow and then
Fig. 5. The flow evolution of constant stream-function contour during two-v
suddenly decelerating the wall velocities to a range of
Re < 236 such that only the two-vortex flow remains stable.
Fig. 6 shows the flow transition by reducing Re from 600 to
200. Note that although the stable two-vortex flow actually
exists when Re < 429, a flow transition to a two-vortex flow
can only be guaranteed when Re < 236, because in the
range 236 < Re < 429, two stable flows co-exist (i.e. cat’s
eye flow and two-vortex flow) and the final flow solution
cannot be predicted.
3.2.3. Strong asymmetric flow to two-vortex flow transition

A strong asymmetric flow to two-vortex flow transition
can be generated by commencing with a stable strong
asymmetric flow and then suddenly decelerating the veloc-
ities of the two driving walls to a range of Re < 236 such
that only the two-vortex flow remains stable. Fig. 7
illustrates the flow transition by reducing Re from 866 to
200.
3.2.4. Strong asymmetric flow to cat’s eye flow transition

The strong asymmetric flow to cat’s eye flow transition
can be generated by commencing with a stable strong
asymmetric flow and then suddenly decelerating the driving
velocities of the upper and lower cavity walls to a range of
429 < Re < 690 such that only the cat’s eye flow is stable.
Fig. 8 shows an example of the flow transition by reducing
Re from 866 to 600. Although stable cat’s eye flow exists
when Re > 236, only in the range 429 < Re < 690 can the
strong asymmetric flow be guaranteed to evolve into cat’s
eye flow. When Re > 690, two stable states are evi-
dent, i.e. strong asymmetric flow and cat’s eye flow. Either
ortex flow to cat’s eye flow transition by increasing Re from 200 to 600.



Fig. 7. The flow evolution of constant stream-function contour during strong asymmetric flow to two-vortex flow transition by reducing Re from 866 to
200.

Fig. 6. The flow evolution of constant stream-function contour during cat’s eye flow to two-vortex flow transition by reducing Re from 600 to 200.
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decelerating or accelerating the driving velocities to this
range will result in a terminative cat’s eye or asymmetric
flow. Furthermore, the range 236 < Re < 429 also generates
two stable flow states, i.e. two-vortex flow and cat’s eye
flow. Therefore, decelerating the upper and lower walls to
this range will not guarantee a transition to cat’s eye flow.
In fact, the terminative flow state depends on the decelera-
tion history of the two walls.
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Fig. 9. The stability distribution in the cavity flow.

Fig. 8. The flow evolution of constant stream-function contour during strong asymmetric flow to cat’s eye flow transition by reducing Re from 866 to 600.
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3.3. Non-isothermal flow case using Gr as the continuation

parameter

In addition to moving the upper and lower cavity walls
in opposite directions at the same velocity, the flow may
also be driven by the temperature gradient within the cav-
ity. The change in fluid density caused by the temperature
gradient is governed by the Boussinesq approximation. A
continuation method is used to compute flow solutions
and we plot the values of the average Nusselt number as
a function of the Grashof number for several values of
Reynolds numbers in the range Re 5 600. As shown in
Fig. 9, when Re < 195, no saddle-node bifurcation points
are apparent and consequently the flow states on these
branches are stable. However, when Re = 195, two sad-
dle-node bifurcation points are identified on the corre-
sponding branches and an unstable flow state is found to
appear between the two points. If these points are con-
nected, they form a thumb-shaped boundary line. The flow
states outside the boundaries of this line are stable, while
those within the boundary are unstable. The saddle-node
bifurcation points located on specific branches can be used
to distinguish the regions of stability and instability as
functions of the Reynolds and Grashof numbers. If these
branches are followed from a lower Grashof number, it is
observed that these saddle-node points destabilize the ini-
tially stable cat’s eye flow. The resulting unstable flow is
subsequently stabilized by a further saddle-node point
and becomes a stable two-vortex flow. As an example,
Fig. 10 shows the streamline patterns and isothermal con-
tours as a function of Grashof number for Re = 350. With
an increase in the Grashof number, the temperature gradi-
ent causes hot fluid near the lower cavity wall to move
upwards and cool fluid near the upper wall to move down-
wards within the large recirculation associated with cat’s
eye flow. Therefore, a convection effect is gradually devel-
oped in the cavity. Subsequently, the streamline contours
gradually pinch at a midway point between the upper
and lower walls to form a stagnation point at the cavity



Fig. 10. The streamline contours and isothermal lines traced by Gr for Re = 350.
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center. As shown in Fig. 10, most isothermal lines adjacent
to the upper and lower walls transfer a significant amount
of heat energy to the two walls. The cat’s eye flow cannot
sustain an excessive flow convection in the cavity and even-
tually becomes destabilized by a saddle-node bifurcation
point at Gr = 6479. After the saddle-node point, the pinch
effect midway between the two moving walls gradually
becomes more pronounced as the Grashof number
decreases. Two recirculations appear in close proximity
to the adiabatic sides of the cavity and two separate co-
rotating vortices are gradually formed in place of the large
recirculation. These vortices prevent the adequate mixing
of the hot rising fluid and the cool sinking fluid with the
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Fig. 11. The distribution of saddle-node bifurcation points as functions of
the Reynolds number and the Grashof number.
result that there is a significant decrease in the heat trans-
ferred on the lower cavity wall. The unstable flow becomes
stabilized through a second saddle-node bifurcation point
at Gr = �566 and the two co-rotating vortices gradually
separate. The negative value of the Grashof number indi-
cates the case where the temperature of the upper wall is
higher than that of the lower one. As the Grashof number
increases, these two vortices become more coherent. Fur-
thermore, most of the isothermal lines are concentrated
towards the center of the cavity, which implies that the heat
transfer on the bottom wall continues to be inefficient. It is
noted that the multiple solutions identified with changes
in the Grashof number correspond well to the branches
Fig. 12. The distribution of saddle-node bifurcation points as functions of
the Reynolds number and the Nusselt number.
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plotted previously when using the Reynolds number as the
continuation parameter.

Fig. 11 shows the distribution of saddle-node bifurca-
tion points as functions of the Reynolds number and the
Grashof number. Two boundary lines can be used to dis-
tinguish the existent region of each flow. The cat’s eye flow
exists in the region below the upper line, however the two-
vortex flow exists in the region above the lower line. Both
flow states coexist between the two boundary lines.
Fig. 12 shows the distribution of saddle-node bifurcation
points as functions of the Reynolds number and the Nus-
selt number. When Re = 195, two saddle-node bifurcation
points exist for each Reynolds number. The flow at the
upper point is cat’s eye flow, and the flow at the lower point
is two-vortex flow.
4. Conclusions

The present study has presented the use of a continua-
tion method to predict the multiple flow solutions for a
two-sided lid-driven flow with/without heat transport. This
type of flow can be found in many applications within the
coating and drying technologies field.

For the case without heat transfer, using the Reynolds
number as a continuation parameter, five distinct flow solu-
tions have been calculated within the considered parameter
range (i.e. Re < 2000) and a comprehensive bifurcation dia-
gram has been constructed. The bifurcation diagram is a use-
ful means of revealing the physics of the flow and can be used
to identify the region of stable solutions and the relations
between these solutions. Three of the five calculated solu-
tions are determined to be stable. Of these, two solutions
are symmetric while the remaining solution is asymmetric.
The asymmetric solution branch which originates from a
symmetry-breaking pitchfork bifurcation is stabilized by a
subsequent saddle-node bifurcation resulting in the eventual
formation of a strong asymmetric flow. A new bifurcation
point is identified from these solutions, namely, the symme-
try-breaking bifurcation point P at Re = 1048. In compari-
son to the 3-D results shown in [9,11], the present 2-D
results show the region of multiplicity is mostly beyond the
border of stability against 3-D perturbations. Most of the
flow states shown in Section 3.1 cannot be realized in an
experiment, only the two-vortex flow and the cat’s eye flow
is stable against 3-D perturbations.

Time-dependent calculations have also been performed
to study the flow transitions between various stable flows.
By controlling the velocities of the upper and lower walls
(i.e. the Reynolds number), the flow within the cavity can
be led through its permitted stable states. The constructed
bifurcation diagram not only illustrates the restricted
Reynolds number ranges within which equilibrium states
can exist, but also illustrates the permissible transitions
between them and indicates the eventual terminative flow
state. The transition process provides valuable information
regarding flow evolution and can be used to confirm flow
stability.

The study has also considered the use of the Grashof
number as a continuation parameter for the case with heat
transfer and has plotted a series of flow branches for differ-
ent values of Reynolds number. It has been shown that a
unique stable solution exists at lower Reynolds numbers.
For higher values of Reynolds number, two saddle-node
points are identified on the corresponding branches and it
has been noted that the flow states between the two sad-
dle-node points become unstable.

Finally, it has been demonstrated how connecting these
saddle-node bifurcation points forms a thumb-shaped
boundary line which separates the stable flow states from
the unstable states, i.e. the boundary line identifies the
restricted range of Reynolds and Grashof number within
which stable states may be attained. This information is
highly valuable when designing industrial applications.
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